RATE MEASURE

Velocity, Acceleration:

A particle starts from a fixed point and moves a distance ' S ' along a straight-line during time ' t ' then
$\mathrm{s}=\mathrm{f}(\mathrm{t})$
Velocity $=\mathrm{V}=\frac{\mathrm{ds}}{\mathrm{dt}}$
Acceleration $=\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}}$
Note:
(i) if $\mathrm{v}>0$, then the particle moving away from the straight point.
(ii) If $v<0$, then particle moving towards the straight point.
(iii) If $v=0$, then the particle comes rest.

The Following formulae will be used in Solving problems

Rectangle:

Perimeter of Rectangle $=2(\mathrm{l}+\mathrm{b})$ units
Area of Rectangle $=\mathrm{l} \times \mathrm{b}$ square units

CYLINDER:

If ' r is the radius of the base of cylinder and ' h ' is the height of the cylinder, then
Area of base $=\pi r^{2}$ sq.u.
Curved surface area $=2 \pi r h$ sq.u.

Total surface area $=2 \pi r(h+r)$ sq. u.
Volume $=\pi r^{2} h$ cubic units.
CONE:
If ' r ' is the radius of base, ' h ' is the height of cone and ' l ' is slant height then $\ell^{2}=r^{2}+h^{2}$
Curved surface area $=\pi r \ell$ units.
Total surface area $=\pi r(\ell+r)$ sq. units. Volume $=\frac{1}{3} \pi r^{2} h$ cubic units. SPHERE:

If ' r ' is the radius of the Sphere then
Surface area $=\pi r^{2}$ sq. units.
Volume $=\frac{4}{3} \pi r^{3}$ cubic units.

Solved Problems:

1. A particle is moving along a line such that $S=t^{2}-6 t+8$. Find its velocity and acceleration at $\mathrm{t}=2 \mathrm{sec}$.
Sol: Given $S=t^{2}-6 t+8$
Velocity $=\frac{\mathrm{dS}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{t}^{2}-6 \mathrm{t}+8\right)=2 \mathrm{t}-6$
at $\mathrm{t}=2 \mathrm{sec}$, Velocity $=2(2)-6=4-6=-2$ units/sec
Acceleration (a) $=\frac{\mathrm{dv}}{\mathrm{dt}}=2-0=2$
at $\mathrm{t}=2 \mathrm{sec}$, Acceleration $=2$ units $/ \mathrm{sec}^{2}$
2. A particle is moving along a straight line according to the law $S=2 t^{3}-3 t^{2}+15 t+18$.

Find its velocity when its acceleration is zero
Sol: Given $S=2 t^{3}-3 t^{2}+15 t+18$

$$
\begin{gathered}
\text { Velocity }=\frac{\mathrm{dS}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(2 \mathrm{t}^{3}-3 \mathrm{t}^{2}+15 \mathrm{t}+18\right)=6 \mathrm{t}^{2}-6 \mathrm{t}+15 \\
\text { Acceleration }(\mathrm{a})=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(6 \mathrm{t}^{2}-6 \mathrm{t}+15\right)=12 \mathrm{t}-6
\end{gathered}
$$

When the acceleration is zero
$\Rightarrow 12 \mathrm{t}-6=0$
$\Rightarrow 12 \mathrm{t}=6$
$\Rightarrow \mathrm{t}=\frac{6}{12}=\frac{1}{2}$
When $\mathrm{t}=\frac{1}{2}$ sec, velocity $=6\left(\frac{1}{2}\right)^{2}-6\left(\frac{1}{2}\right)+15$

$$
\begin{aligned}
& =\frac{6}{4}-3+15 \\
& =\frac{3}{2}+12=\frac{3+24}{2}=\frac{27}{2} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

3. A stone is projected vertically up ward at a height S foot after 1 second, where $S=80 t-$ $16 t^{2}$. Find (i) Its initial velocity (ii) Its velocity at $t=1 \mathrm{sec}$ (iii) Time when it is at rest (iv) The greatest height above the ground

Sol: Given $S=80 t-16 t^{2}$
Velocity $=\frac{\mathrm{dS}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(80 \mathrm{t}-16 \mathrm{t}^{2}\right)=80-16(2 \mathrm{t})=80-32 \mathrm{t}$
(i) Initial velocity

When $t=0 \mathrm{sec}$, we get initial velocity
\Rightarrow Initial velocity $=80-32(0)=80 \mathrm{ft} / \mathrm{sec}$
\therefore Initial velocity $80 \mathrm{ft} / \mathrm{sec}$
(ii) Velocity at $\mathrm{t}=1 \mathrm{sec}$

At $\mathrm{t}=1 \mathrm{sec}$, Velocity $=80-32(1)=80-32=48 \mathrm{ft} / \mathrm{sec}$
\therefore at $\mathrm{t}=1 \mathrm{sec}$, the velocity $=48 \mathrm{ft} / \mathrm{sec}$
(iii) Time when stone is at rest

When the stone is rest, then its velocity is zero
$\Rightarrow 80-32 \mathrm{t}=0$
$80=32 \mathrm{t}$

$$
\mathrm{t}=\frac{80}{32}=\frac{5}{2} \mathrm{sec}
$$

\therefore time $=\frac{5}{2}$ sec
(iv) The greatest height above the ground

When the stone is greatest height above the ground, then its velocity is zero
$80-32 t=0$
$80=32 t$

$$
\mathrm{t}=\frac{80}{32}=\frac{5}{2} \mathrm{sec}
$$

$$
S=80 t-16 t^{2}
$$

$$
=80\left(\frac{5}{2}\right)-16\left(\frac{5}{2}\right)^{2}
$$

$$
=200-16 \times \frac{25}{4}=200-100=100
$$

\therefore The greatest height above the ground $=100 \mathrm{ft}$
4. A circular metal plate expands by heat so that its radius is increasing at the rate of $0.02 \mathrm{~cm} / \mathrm{sec}$. At what rate its area increasing when the radius is 20 cm ?
Sol: Let radius of the circle $=r$ and area of circle $=\mathrm{A}$

$$
\begin{aligned}
& \mathrm{r}=20 \mathrm{~cm} \text { and } \frac{\mathrm{dr}}{\mathrm{dt}}=0.02 \mathrm{~m} / \mathrm{sec} \\
& \begin{aligned}
\mathrm{A} & =\pi \mathrm{r}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dt}} & =\pi 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& =2 \pi \times 20 \times 0.02 \\
& =\pi \times 40 \times 0.02 \\
& =0.8 \pi \mathrm{~cm}^{2} / \mathrm{sec}
\end{aligned}
\end{aligned}
$$

\therefore rate of change in area of circle is $0.8 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
5. The radius of a circle is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate of change of the area when the radius is 24 cm .
Sol: Let radius of the circle $=r$ and area of circle $=\mathrm{A}$

$$
\begin{aligned}
\mathrm{r} & =24 \mathrm{~cm} \text { and } \frac{\mathrm{dr}}{\mathrm{dt}}=2 \mathrm{~m} / \mathrm{sec} \\
\mathrm{~A} & =\pi \mathrm{r}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dt}} & =\pi 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& =2 \pi \times 24 \times 2
\end{aligned}
$$

$$
\begin{aligned}
& =\pi \times 48 \times 2 \\
& =96 \pi \mathrm{~cm}^{2} / \mathrm{sec}
\end{aligned}
$$

\therefore rate of change in area of circle is $96 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
6. A circular metal plate expands by heat so that its radius is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$. At what rate its area increasing when the radius is 2 cm ?
Sol: Let radius of the circle $=\mathrm{r}$ and area of circle $=\mathrm{A}$

$$
\begin{aligned}
\mathrm{r} & =2 \mathrm{~cm} \text { and } \frac{\mathrm{dr}}{\mathrm{dt}}=0.01 \mathrm{~m} / \mathrm{sec} \\
\mathrm{~A} & =\pi \mathrm{r}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dt}} & =\pi 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& =2 \pi \times 2 \times 0.01 \\
& =\pi \times 4 \times 0.01 \\
& =0.04 \pi \mathrm{~cm}^{2} / \mathrm{sec}
\end{aligned}
$$

\therefore rate of change in area of circle is $0.04 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
7. Each side of a square increases at the rate of $1.5 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the square when the side is 12 cm . Also find the rate at which perimeter increases.
Sol: Let the side of square $=x$, Area of square $=A$ and perimeter of square $=P$

$$
\begin{aligned}
\mathrm{x} & =12 \mathrm{~cm} \text { and } \frac{\mathrm{dx}}{\mathrm{dt}}=1.5 \mathrm{~cm} / \mathrm{sc} \\
\mathrm{~A} & =\mathrm{x}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dt}} & =2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}} \\
& =2 \times 12 \times 1.5 \\
& =36 \mathrm{~cm}^{2} / \mathrm{sec} \\
\mathrm{P} & =4 \mathrm{x} \\
\frac{\mathrm{dP}}{\mathrm{dt}} & =4 \frac{\mathrm{dx}}{\mathrm{dt}} \\
& =4 \times 1.5 \\
& =6 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

8. Each side of a square increases at the rate of $1 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the square when the side is 15 cm . Also find the rate at which perimeter increases.
Sol: Let the side of square $=\mathrm{x}$, Area of square $=\mathrm{A}$ and perimeter of square $=\mathrm{P}$

$$
\begin{aligned}
\mathrm{x} & =15 \mathrm{~cm} \text { and } \frac{\mathrm{dx}}{\mathrm{dt}}=1 \mathrm{~cm} / \mathrm{sc} \\
\mathrm{~A} & =\mathrm{x}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dt}} & =2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}} \\
& =2 \times 15 \times 1 \\
& =30 \mathrm{~cm}^{2} / \mathrm{sec} \\
\mathrm{P} & =4 \mathrm{x} \\
\frac{\mathrm{dP}}{\mathrm{dt}} & =4 \frac{\mathrm{dx}}{\mathrm{dt}} \\
& =4 \times 1
\end{aligned}
$$

$$
=4 \mathrm{~cm} / \mathrm{sec}
$$

9. Each side of a square increases at the rate of $0.3 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the square when the side is 8 cm . Also find the rate at which perimeter increases.
Sol: Let the side of square $=x$, Area of square $=A$ and perimeter of square $=P$

$$
\begin{aligned}
\mathrm{x} & =8 \mathrm{~cm} \text { and } \frac{\mathrm{dx}}{\mathrm{dt}}=0.3 \mathrm{~cm} / \mathrm{sc} \\
\mathrm{~A} & =\mathrm{x}^{2} \\
\frac{\mathrm{dA}}{\mathrm{dt}} & =2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}} \\
& =2 \times 8 \times 0.3 \\
& =4.8 \mathrm{~cm}^{2} / \mathrm{sec} \\
\mathrm{P} & =4 \mathrm{x} \\
\frac{\mathrm{dP}}{\mathrm{dt}} & =4 \frac{\mathrm{dx}}{\mathrm{dt}} \\
& =4 \times 0.3 \\
& =1.2 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

10. A spherical balloon is being inflated so that the radius is increasing at the rate of 3 $\mathrm{cm} / \mathrm{sec}$. Find the rate at which the volume is increasing when $\mathrm{r}=10 \mathrm{~cm}$.
Sol: : Let the radius of spherical balloon $=r$, volume of spherical balloon $=V$

$$
\begin{aligned}
\mathrm{r} & =3 \mathrm{~cm} \text { and } \frac{\mathrm{dr}}{\mathrm{dt}}=3 \mathrm{~cm} / \mathrm{sc} \\
\mathrm{~V} & =\frac{4}{3} \pi \mathrm{r}^{3} \\
\frac{\mathrm{dV}}{\mathrm{dt}} & =\frac{4}{3} \pi \times 3 \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& =4 \pi \times 3(10)^{2}=12 \times 100 \pi \\
& =1200 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

11. The Volume of sphere is increasing at the rate of $400 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate of increasing of its radius and its surface area at the instant when the radius of sphere is 40 cm .
Sol: Let the radius of sphere $=r$, volume $=V$ and surface area $=S$

$$
\begin{aligned}
& \mathrm{r}=40 \mathrm{~cm} \text { and } \frac{\mathrm{dv}}{\mathrm{dt}}=400 \mathrm{~cm}^{3} / \mathrm{sc} \\
& \mathrm{~V}=\frac{4}{3} \pi \mathrm{r}^{3} \\
& \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{4}{3} \pi \times 3 \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& 400=4 \pi \times(40)^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{400}{6400 \pi}=\frac{1}{16 \pi} \mathrm{~cm} / \mathrm{sec} \\
& S=4 \pi r^{2} \\
& \frac{\mathrm{dS}}{\mathrm{dt}}=4 \pi \times 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& =4 \pi \times 2(40) \frac{1}{16 \pi} \\
& =20 \mathrm{~cm}^{2} / \mathrm{sec}
\end{aligned}
$$

12. A ladder 13 meters long leans against a vertical wall. If the foot of the ladder is pulled away from the wall at the rate of $1 \mathrm{~m} / \mathrm{sec}$ along the horizontal floor, how fast is the top descending, when the lower end is 12 m away from the wall.
Sol: Let $\mathrm{OA}=\mathrm{x}$ meters

$$
\mathrm{OB}=\mathrm{y} \text { meters }
$$

$\mathrm{x}=12 \mathrm{~cm}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}=1 \mathrm{~m} / \mathrm{sec}$
in $\triangle \mathrm{AOB} \mathrm{AB}{ }^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$
$13^{2}=x^{2}+y^{2}$
$169=x^{2}+y^{2}$
$y^{2}=169-x^{2}$
$y^{2}=169-12^{2}$
$=169-144=25$
$y=5$

$x^{2}+y^{2}=169$
$2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$
$2 x(1)+2 y \frac{d y}{d t}=0$
$2 y \frac{d y}{d t}=-2 x$
$\frac{d y}{d t}=\frac{-2 x}{2 y}=\frac{-x}{y}=\frac{-12}{5} \mathrm{~m} / \mathrm{sec}$
13. One end of a ladder 17 ft long is leaning against a wall. If the foot of the ladder be pulled away from the wall at the rate of $3 \mathrm{ft} / \mathrm{min}$, how fast is the tgp of the ladder descending when the foot of the ladder is 8 ft from the wall?

$$
\begin{aligned}
& \text { Sol: Let } O A=x \mathrm{ft} \\
& O B=y \mathrm{ft} \\
& x=8 \mathrm{ft} \text { and } \frac{\mathrm{dx}}{\mathrm{dt}}=3 \mathrm{ft} / \mathrm{min} \\
& \text { in } \triangle \mathrm{AOB} \mathrm{AB}^{2}=0 A^{2}+\mathrm{OB}^{2} \\
& 17^{2}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& 289=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \mathrm{y}^{2}=289-\mathrm{x}^{2} \\
& \mathrm{y}^{2}=289-8^{2} \\
& =289-64=225 \\
& y=15 \\
& x^{2}+y^{2}=289 \\
& 2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}+2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dt}}=0 \\
& 2 \mathrm{x}(3)+2 \mathrm{dy} \frac{\mathrm{dt}}{\mathrm{dt}}=0
\end{aligned}
$$

$$
2 y \frac{d y}{d t}=-6 x
$$

$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{-6 \mathrm{x}}{2 \mathrm{y}}=\frac{-3 \mathrm{x}}{\mathrm{y}}=\frac{-3 \times 8}{15}=\frac{-8}{5}=-1.6 \mathrm{ft} / \mathrm{min}$
14. A ladder 5 m long is placed against a vertical wall. Foot of the ladder is slipping away from the wall at the rate of $5 \mathrm{~cm} / \mathrm{sec}$. Find the rate descending of its top if the foot of the ladder is 3 m away from the wall.
Sol: Let $\mathrm{OA}=\mathrm{x}$ meters
$\mathrm{OB}=\mathrm{y}$ meters
$\mathrm{x}=3 \mathrm{~m}=300 \mathrm{~cm}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}=5 \mathrm{~cm} / \mathrm{sec}$
in $\triangle \mathrm{AOB} \mathrm{AB}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$

$$
\begin{aligned}
5^{2} & =x^{2}+y^{2} \\
25 & =x^{2}+y^{2} \\
y^{2} & =25-x^{2} \\
y^{2} & =25-3^{2} \\
& =25-9=16 \\
y & =4 \mathrm{~m}=400 \mathrm{~cm}
\end{aligned}
$$

$\mathrm{x}^{2}+\mathrm{y}^{2}=25$
$2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$
$2 x(5)+2 y \frac{d y}{d t}=0$
$2 y \frac{d y}{d t}=-10 x$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{-10 \mathrm{x}}{2 \mathrm{y}}=\frac{-5 \mathrm{x}}{\mathrm{y}}=\frac{-5 \times 300}{400}=\frac{-15}{4} \mathrm{~cm} / \mathrm{sec}$
15. A boy 1.6 m tall is walking away from a lamp post 10 m tall. If the boy is walking at the rate of $1.2 \mathrm{~m} / \mathrm{sec}$, how fast is his shadow increasing when he is 15 m from the lamp post?
Sol: Let $\mathrm{AB}=$ height of the lamp post $=10 \mathrm{~cm}$

$$
\begin{aligned}
& \quad \mathrm{CD}=\text { height of the boy }=1.6 \mathrm{~m} \\
& \mathrm{AC}=\mathrm{x} \text { and } \mathrm{CO}=\mathrm{y} \\
& \mathrm{x}=15 \mathrm{~cm} \text { and } \frac{\mathrm{dx}}{\mathrm{dt}}=1.2 \mathrm{~cm} / \mathrm{sec} \\
& \Delta \mathrm{OAB} \sim \Delta \mathrm{OCD} \\
& \frac{\mathrm{AB}}{\mathrm{OA}}=\frac{\mathrm{CD}}{\mathrm{OC}} \Rightarrow \frac{10}{\mathrm{x}+\mathrm{y}}=\frac{1.6}{\mathrm{y}} \\
& \Rightarrow 10 \mathrm{y}=1.6(\mathrm{x}+\mathrm{y}) \\
& \Rightarrow 10 \mathrm{y}=1.6 \mathrm{x}+1.6 \mathrm{y} \\
& \Rightarrow 10 \mathrm{y}-1.6 \mathrm{y}=1.6 \mathrm{x} \Rightarrow 8.4 \mathrm{y}=1.6 \mathrm{x} \\
& \Rightarrow \mathrm{y}=\frac{1.6 \mathrm{x}}{8.4}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dt}} & =\frac{1.6}{8.4} \frac{\mathrm{dx}}{\mathrm{dt}} \\
& =\frac{1.6}{8.4} \times 1.2 \\
& =0.228 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

\therefore The shadow is increasing at the rate of $0.228 \mathrm{~m} / \mathrm{sec}$
16. A man of 2 m tall is approaching a lamp post at the rate of $0.5 \mathrm{~m} / \mathrm{sec}$. If the lamp post is situated at a height of 8 m , then find the rate at which the length of the shadow decreasing?
Sol: Let $\mathrm{AB}=$ height of the lamp post $=8 \mathrm{~cm}$

$$
\mathrm{CD}=\text { height of the } \mathrm{man}=2 \mathrm{~m}
$$

$$
\begin{aligned}
& \mathrm{AC}=\mathrm{x} \text { and } \mathrm{CO}=\mathrm{y} \\
& \frac{\mathrm{dx}}{\mathrm{dt}}=0.5 \mathrm{~m} / \mathrm{sec} \\
& \Delta \mathrm{OAB} \sim \Delta \mathrm{OCD} \\
& \frac{\mathrm{AB}}{\mathrm{OA}}=\frac{\mathrm{CD}}{\mathrm{OC}} \Rightarrow \frac{8}{\mathrm{x}+\mathrm{y}}=\frac{2}{\mathrm{y}} \\
& \Rightarrow 8 \mathrm{y}=2(\mathrm{x}+\mathrm{y}) \\
& \Rightarrow 4 \mathrm{y}=\mathrm{x}+\mathrm{y} \\
& \Rightarrow 4 \mathrm{y}-\mathrm{y}=\mathrm{x} \Rightarrow 3 \mathrm{y}=\mathrm{x} \\
& \Rightarrow \mathrm{y}=\frac{\mathrm{x}}{3} \\
& \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{1}{3} \frac{\mathrm{dx}}{\mathrm{dt}} \\
& \quad=\frac{1}{3} \times 0.5 \\
& \quad=0.166 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

\therefore The shadow is increasing at the rate of $0.228 \mathrm{~m} / \mathrm{sec}$
17. The base radius of cylindrical vessel full of oil is 30 cm . Oil is drawn at the rate of 27000 $\mathrm{cm}^{3} / \mathrm{min}$. Find the rate at which the level of the oil is falling in the vessel.
Sol: Let radius of the cylinder $=\mathrm{r}$, height $=\mathrm{h}$ and Volume $=\mathrm{V}$

$$
\mathrm{r}=30 \mathrm{~cm} \text { and } \frac{\mathrm{dV}}{\mathrm{dt}}=-27000 \mathrm{~cm}^{3} / \mathrm{min}
$$

Volume of the cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& \frac{\mathrm{dV}}{\mathrm{dt}}=\pi \mathrm{r}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \\
& -27000=\pi \mathrm{r}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \\
& \Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{1}{\pi \mathrm{r}^{2}}(-27000) \\
& \quad=\frac{1}{\pi(30)^{2}}(-27000) \\
& \quad=\frac{-30}{\pi} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

\therefore The rate at which the level of oil is falling $=\frac{-30}{\pi} \mathrm{~cm} / \mathrm{min}$
18. A cylindrical vessel of radius 0.5 m is being filled with the oil at the rate of $\frac{0.25}{10^{6}} \mathrm{~m}^{3} / \mathrm{min}$. How fast is the oil in the vessel rises?
Sol: Let radius of the cylinder $=\mathrm{r}$, height $=\mathrm{h}$ and Volume $=\mathrm{V}$

$$
\mathrm{r}=0.5 \mathrm{~m} \text { and } \frac{\mathrm{d} \mathrm{~V}}{\mathrm{dt}}=\frac{0.25}{10^{6}} \mathrm{~m}^{3} / \mathrm{min}
$$

$$
\text { Volume of the cylinder }=\pi r^{2} h
$$

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\pi \mathrm{r}^{2} \frac{\mathrm{dh}}{\mathrm{dt}}
$$

$$
\frac{0.25}{10^{6}}=\pi r^{2} \frac{\mathrm{dh}}{\mathrm{dt}}
$$

$$
\Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{1}{\pi \mathrm{r}^{2}} \frac{0.25}{10^{6}}
$$

$$
=\frac{1}{\pi(0.5)^{2}} \frac{0.25}{10^{6}}
$$

$$
=\frac{1}{\pi \cdot 10^{6}}
$$

\therefore The rate at which the level of oil is raising $=\frac{1}{10^{6} \pi} \mathrm{~cm} / \mathrm{min}$
19. A conical water tank with vertex down has 20 m and depth of 20 m . Water is being pumped into the tank at the rate of $40 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the level of the water rising when the water is 8 m depth?
Sol: Let radius of the Cone $=r$, height $=\mathrm{h}$ and Volume $=\mathrm{V}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{AB}=20 \mathrm{~m}, \text { height of } \\
& \text { let } \mathrm{CD}=\mathrm{r} \text { and } \mathrm{OC}=\mathrm{h} \\
& \Delta \mathrm{OAB} \sim \triangle \mathrm{OCD} \\
& \quad \frac{\mathrm{AB}}{\mathrm{OA}}=\frac{\mathrm{CD}}{\mathrm{OC}} \Rightarrow \frac{20}{20}=\frac{\mathrm{r}}{\mathrm{~h}} \\
& \quad \Rightarrow \mathrm{r}=\mathrm{h}
\end{aligned}
$$

Volume of the Cone is

$$
\begin{aligned}
& \mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \\
& \mathrm{~V}=\frac{1}{3} \pi(\mathrm{~h})^{2} \mathrm{~h}=\frac{1}{3} \pi \mathrm{~h}^{3} \\
& \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{1}{3} \pi 3 \mathrm{~h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \\
& 40=\pi \mathrm{h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \\
& \Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{1}{\pi \mathrm{~h}^{2}} 40 \\
&=\frac{1}{\pi(8)^{2}} 40 \\
&=\frac{5}{8 \pi} \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

\therefore Rate of change in water level $=\frac{5}{8 \pi} \mathrm{~m} / \mathrm{min}$
20. Water is poured into a conical flask of height 10 cm and of diameter of base 4 cm at the rate of $0.3 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate at which the level of water is increasing when the depth of water is 3 cm
Sol: Let radius of the Cone $=r$, height $=\mathrm{h}$ and Volume $=\mathrm{V}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{AB}=2 \mathrm{c} \mathrm{~m}, \text { height of the cone }=O A=10 \mathrm{~cm} \text { and } \frac{\mathrm{dV}}{\mathrm{dt}}=0.3 \mathrm{~cm}^{3} / \mathrm{min} \\
& \text { let } \mathrm{CD}=\mathrm{r} \text { and } \mathrm{OC}=\mathrm{h} \\
& \begin{array}{ll}
\triangle \mathrm{OAB} \sim \Delta O C D \\
\frac{\mathrm{AB}}{\mathrm{OA}}=\frac{\mathrm{CD}}{\mathrm{OC}} \Rightarrow \frac{2}{10}=\frac{\mathrm{r}}{\mathrm{~h}} \\
\Rightarrow 10 \mathrm{r}=2 \mathrm{~h} \\
\Rightarrow 5 \mathrm{r}=2 \mathrm{~h} \\
\quad \mathrm{r}=\frac{\mathrm{h}}{5}
\end{array}
\end{aligned}
$$

Volume of the Cone is

$$
\begin{aligned}
& \mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \\
& \mathrm{~V}=\frac{1}{3} \pi\left(\frac{\mathrm{~h}}{5}\right)^{2} \mathrm{~h}=\frac{1}{3} \pi \frac{1}{25} \mathrm{~h}^{3} \\
& \begin{aligned}
\frac{\mathrm{dV}}{\mathrm{dt}} & =\frac{1}{3} \pi \frac{1}{25} 3 \mathrm{~h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \\
0.3 & =\frac{1}{25} \pi \mathrm{~h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \\
\Rightarrow & \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{25}{\pi \mathrm{~h}^{2}}(0.3) \\
& =\frac{25}{\pi(3)^{2}}(0.3)=\frac{25}{\pi .9}(0.3)=\frac{25}{\pi .9} \frac{3}{10} \\
& =\frac{5}{6 \pi} \mathrm{~m} / \mathrm{min}
\end{aligned}
\end{aligned}
$$

\therefore Rate of change in water level $=\frac{5}{6 \pi} \mathrm{~m} / \mathrm{min}$

