Functions Exercise 1b SolutionsÂ
Functions Exercise 1b
The famous mathematician ” Lejeune Dirichlet” defined a function.
Function:Â A variable is a symbol which represents any one of a set of numbers, if two variables x and y so related that whenever a value is assigned to x there is autometically assigned by some rule or correspondence a value to y, then we say y is a function of x.
Chapter 1 Functions Exercise 1b Solutions for inter first year students, prepared by Mathematics expert of www.basicsinmaths.com
Functions Exercise 1b
Exercise 1(b) Solutions
I.
1.If f (x) = ex and g(x) =
, then show that f og = gof and f-1 = g-1
Sol:
Given     f (x) = ex and g(x) =![]()
             (fog) (x) = f (g (x))
                               = f (
)
                               =![]()
                               = x ————- (1)
           (gof) (x) = g (f (x))
                               = g (ex)
                               =![]()
                               = x![]()
                               = x ————- (2)
From (1) and (2)Â f og = gof
let y = f(x)
    x = f-1(y)
    y = ex
    x = ![]()
   f-1 (x) = ![]()
let g(x) = z
        x = g-1(z)
        z =![]()
         x = ez
            g-1 (x)  = ex
2. If f (y) =
, Â g (y) =
then show that fog(y) = y
Sol:
Given f (y) =
, Â g (y) =
      Â
Now
   fog(y) = f(g(y))

∴ fog(y) = y
3. If f: R ⟶ R, g: R ⟶ R is defined by f(x) = 2x2 + 3 ang g (x) = 3x – 2 then find
    (i) (fog) (x)  (ii) (gof) (x)    (iii) (fof) (0)   (iv) go(fof)(3)
Sol:
   Given f: R ⟶ R is, g: R ⟶ R is defined by f(x) = 2x2 + 3 ang g (x) = 3x – 2
(i) Â (fog) (x) = f(g(x))
                = f(3x – 2)
                = 2 (3x – 2)2 + 3
                = 2 (9x2 – 12x + 4) + 3
                = 18 x2 – 24x + 8 + 3
               = 18 x2 – 24x + 11
∴ (fog) (x) = 18 x2 – 24x + 11
(ii)Â (gof) (x) = g (f (x))
                = g (2x2 + 3)
                = 3(2x2 + 3) – 2 Â
                = 6x2 + 9 – 2
                = 6 x2 + 7
 ∴ (gof) (x) = 6 x2 + 7
PDF Files || Inter Maths 1A &1B || (New) |
(iii)Â (fof) (0) = f (f (0))
                = f (2(0)2 + 3)
               = f (2(0) + 3)
               = f (3)
               = 2 (3)2 + 3
               = 2 (9) + 3
               = 18 + 3 = 21
(iv)Â go(fof) (3) = go (f (f (3)))
                    = go (f (2 (3)2 + 3))
                    = go (f (21))
                    = g (f (21))
                    = g (2 (21)2 + 3))
                    = g (2 (441) + 3))
                    = g (882 + 3)
                    = g (885)
                    = 3 (885) – 2
                    = 2655 – 2
                    = 2653
∴ go(fof) (3) = 2653
Functions Exercise 1b
4. If f: R ⟶ R; g: R ⟶ R is defined by f(x) = 3x – 1, g (x) = x2 + 1, then find  Â
   (i) (fof) (x2 + 1)  (ii) (fog) (2)    (iii) (gof) (2a – 3)
Sol:
Given f: R ⟶ R; g: R ⟶ R is defined by f(x) = 3x – 1, g (x) = x2 + 1
(i) (fof) (x2 + 1) = f (f (x2 + 1))
                         = f (3 (x2 + 1)– 1)
                         = f (3x2 + 3– 1)
                         = f (3x2 + 2)
                         = 3(3x2 + 2) – 1
                         = 9x2 + 6 – 1
                         = 9x2 + 5              Â
(ii) (fog) (2) = f (g (2))
                 = f (22 + 1)
                 =f (4 + 1)
                 = f (5)
                 = 3(5) – 1
                 = 15 – 1
                 = 14
(iii) (gof) (2a – 3) = g (f (2a – 3))
                           = g (3(2a – 3) – 1)
                           = g (6a – 9 – 1)
                           = g (6a – 10)
                           = (6a – 10)2 + 1
                           = 362 – 120a + 100 + 1
                           = 362 – 120a + 101
5. If f(x) =
and g(x) =
for all x ∈ (0, ∞) then find (gof) (x)
Sol:
Given f(x) =
 and g(x) =
 for all x ∈ (0, ∞)
  (gof) (x) = g (f (x))
                   = g (
)
                   =![]()
              ∴ (gof) (x) =![]()
6. If f(x) = 2x – 1 and g(x) =
for all x ∈ R then find (gof) (x)
Sol:
  Given f(x) = 2x – 1 and g(x) =
 for all x ∈ R
 Â
     Â
∴ gof(x) = x
7. If f (x) = 2, g (x) = x2 and h(x) = 2x ∀ x ∈ R, then find (fo(goh)) (x)
Sol:
      Given f (x) = 2, g (x) = x2 and h(x) = 2x ∀ x ∈ R
        (fo(goh)) (x) = fo (g (h (x))
                                  = fo g(2x)
                                  = f (g(2x))
                                  = f((2x)2)
                                  = f(4x2)
                                  = 2                           Â
      ∴ (fo(goh)) (x) = 2
Functions Exercise 1b Solutions
8. Find the inverse of the following functions
(i) a, b ∈ R, f: R ⟶ R defined by f(x) = ax + b, (a ≠0)
Given a, b ∈ R, f: R ⟶ R defined by f(x) = ax + b
 Let y = f(x)
        x = f-1(y)
now y = ax + b
         ax = y – b
            x =![]()
           f-1(y) =![]()
    ∴  f-1(x) =![]()
(ii) f: R ⟶ (0, ∞) defined by f(x) = 5x
  Let y = f(x)
        x = f-1(y)
 now y = 5x
         x =![]()
            f-1(y) =![]()
    ∴  f-1(x) =![]()
(iii) f: (0, ∞) ⟶ R defined by f(x) =![]()
   Let y = f(x)
        x = f-1(y)
  now y =![]()
         x = 2y
            f-1(y) = 2y
    ∴  f-1(x) = 2x
9. If f(x) = 1 + x + x2 + … for
, then show that f-1 (x) =Â
  Â
Sol:
Given, f(x) = 1 + x + x2 + … for
       1 + x + x2 + … is an infinite G.P
       a = 1, r = x
 S∞ =![]()
        =![]()
Now
f (x) =![]()
Let y = f(x)
        x = f-1(y)
  now y =![]()
          1 – x = ![]()
  x = 1 –![]()
      =![]()
            f-1(y) =![]()
    ∴  f-1(x) =![]()
10 . If f: [1, ∞) ⟶ [1, ∞) defined by f (x) = 2x (x – 1) then find f-1 (x)
Sol:
Given f: [1, ∞) ⟶ [1, ∞) defined by f (x) = 2x (x – 1)
Let y = f(x)
        x = f-1(y)
  now y = 2x (x – 1)
         Â
= x (x – 1)
   x2 – x = ![]()
   x2 – x –
  = 0


Functions Exercise 1b Solutions
II.Â
1. If f (x) =
  , x ≠± 1, then verify (fof-1) (x) = x
Sol:
  Given f (x) =
  , x ≠± 1
Let y = f(x)
        x = f-1(y)
  now y =![]()
           y (x + 1) = x – 1
           xy + y = x – 1
           1 + y = x – xy
           1 + y = x (1 – y)
            x =
Â
            f-1(y) =![]()
    ∴  f-1(x) =![]()
Now
    
2. If A = {1, 2, 3}, B = {α, β, γ}, C = {p, q, r} and f: A ⟶ B; g: B ⟶ C is defined by f = {(1, α), (2, γ), (3, β)}, g = {(α, q), (β, r), (γ, p)}, then show that f and g are bijective functions and (gof)-1 = f-1og-1
Sol:
Given A = {1, 2, 3}, B = {α, β, γ}, C = {p, q, r} and f: A ⟶ B; g: B ⟶ C is defined by f = {(1, α), (2, γ), (3, β)}, g = {(α, p), (β, r), (γ, p)}
A = {1, 2, 3}, B = {α, β, γ}
f: A ⟶ B; and f = {(1, α), (2, γ), (3, β)}
 ⟹ f (1) = α; f (2) = γ; f (3) = β
      ⟹    Every element of set A has a unique image in set B
         f is injection (one – one)
range of f = codomain of f
⟹ f is surjection (on to)
∴ f is bijective
B = {α, β, γ}, C = {p, q, r}
g: B ⟶ C is defined by g = {(α, q), (β, r), (γ, p)}
⟹ g (α) =q; g (β) = r; g (γ) = p
      ⟹    Every element of set B has a unique image in set C
         g is injection (one – one)
range of g = codomain of g
⟹ g is surjection (on to)
∴ g is bijective
Now
f = {(1, α), (2, γ), (3, β)}, g = {(α, q), (β, r), (γ, p)}
gof = {(1, q), (2, p), (3, r)
(gof)-1 = {(q, 1), (p, 2), (r, 3)} ———– (1)
f-1 = {(α, 1), (γ, 2), (β, 3)
g-1 = {(q, α), (r, β), (p, γ)}
f-1og-1 = {(q, 1), (p, 2), (r, 3)} ———– (2)
From (1) and (2)
(gof)-1 = f-1og-1
3. If f: R ⟶ R; g: R ⟶ R is defined by f (x) = 3x – 2 and g(x) = x2 + 1     then find
 (i) (gof-1) (2)          (ii) (gof) (x – 1)
Sol:
   Given f: R ⟶ R; g: R ⟶ R is defined by f (x) = 3x – 2 and g(x) = x2 + 1
   Let y = f(x)
        x = f-1(y)
  now y = 3x – 2
           3x = y + 2
              x = ![]()
      f-1(y) =![]()
      f-1(x) =![]()

∴ (gof-1) (2)  =![]()
(ii) (gof) (x – 1) = g (f (x – 1))
                            = g (3(x – 1) – 2)
                            = g (3x – 3 – 2)
                            = g (3x – 5)
                            = (3x – 5)2 + 1
                            = 9x2 – 30x + 25 + 1
                            = 9x2 – 30x + 26
∴(gof) (x – 1) = 9x2 – 30x + 26
4. Let f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a), (4, b), (1, c), (3, d)}, then show that (gof)-1 = f-1og-1
Sol:
Given f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a), (4, b), (1, c), (3, d)}
⟹ f -1 = {(a, 1), (c, 2), (d, 4), (b, 3)} and g = {(a, 2), (b, 4), (c, 1), (d, 3)}
Now gof = {(1, 2), (2, 1), (4, 3), (3, 4)}
         (gof)-1 = {(2, 1), (1, 2), (3, 4), (4, 3)} ———(1)
g-1 = {(2, a), (4, b), (1, c), (3, d)} ; f -1 = {(a, 1), (c, 2), (d, 4), (b, 3)}
f-1og-1 = {(2, 1), (1, 2), (3, 4), (4, 3)} ———(2)
from (1) and (2)
(gof)-1 = f-1og-1Â Â Â Â
5. If f: R ⟶ R; g: R ⟶ R is defined by f (x) = 2x – 3 and g(x) = x3 + 5 then find (fog)-1 (x)
Sol:
     Given R ⟶ R; g: R ⟶ R is defined by f (x) = 2x – 3 and g(x) = x3 + 5
      (fog) (x) = f (g(x))
                        = f (x3 + 5)
                         = 2 (x3 + 5) – 3
                        = 2 x3 + 10 – 3 = 2x3 + 7
Let y = (fog) (x)
    ⟹ x = (fog)-1(y)
      y = 2x3 + 7
      2x3 = y – 7
         x3 =![]()
         x =
(fog)-1(y)=Â
    Â
(fog)-1(x)=
     Â
6. Let f(x) = x2, g(x) = 2x then solve the equation (fog) (x) = (gof) (x)
Sol:
 Given f(x) = x2, g(x) = 2x
 (fog) (x) = f(g(x))
                   = f (2x)
                    = (2x)2
                    = 22x
(gof) (x) = g(f(x))
                 = g (x2)
                 =![]()
   Now
     (fog) (x) = (gof) (x)
    ⟹ 22x =![]()
          2x = x2  [∵ if am = an , then m = n]
          x2 – 2x = 0
        ⟹ x (x – 2) = 0
        ⟹x = 0 or x – 2 = 0
∴ x = 0 or x = 2
7. If f (x) = , x ≠±1 then find (fofof) (x) and (fofofof) (x)
Sol:
Given f (x) =
, x ≠±1


PDF Files || Inter Maths 1A &1B || (New) 6th maths notes|| TS 6 th class Maths Concept |


, Â g (y) =
then show that fog(y) = y
for all x ∈ R then find (gof) (x)

